Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 13(9)2021 09 01.
Article in English | MEDLINE | ID: covidwho-1390787

ABSTRACT

The rapid spread of the pandemic caused by the SARS-CoV-2 virus has created an unusual situation, with rapid searches for compounds to interfere with the biological processes exploited by the virus. Doxycycline, with its pleiotropic effects, including anti-viral activity, has been proposed as a therapeutic candidate for COVID-19 and about twenty clinical trials have started since the beginning of the pandemic. To gain information on the activity of doxycycline against SARS-CoV-2 infection and clarify some of the conflicting clinical data published, we designed in vitro binding tests and infection studies with a pseudotyped virus expressing the spike protein, as well as a clinically isolated SARS-CoV-2 strain. Doxycycline inhibited the transduction of the pseudotyped virus in Vero E6 and HEK-293 T cells stably expressing human receptor angiotensin-converting enzyme 2 but did not affect the entry and replication of SARS-CoV-2. Although this conclusion is apparently disappointing, it is paradigmatic of an experimental approach aimed at developing an integrated multidisciplinary platform which can shed light on the mechanisms of action of potential anti-COVID-19 compounds. To avoid wasting precious time and resources, we believe very stringent experimental criteria are needed in the preclinical phase, including infectivity studies with clinically isolated SARS-CoV-2, before moving on to (futile) clinical trials.


Subject(s)
COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Physiological Phenomena/drug effects , Virus Replication/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Cell Cycle , Chlorocebus aethiops , Doxycycline/pharmacology , HEK293 Cells , Humans , Protein Binding , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus , Transduction, Genetic , Vero Cells
2.
Hum Vaccin Immunother ; 16(12): 2992-3000, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-695623

ABSTRACT

The current Coronavirus Disease 2019 (COVID-19) pandemic is causing great alarm around the world. The pathogen for COVID-19 - severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - is the seventh known coronavirus to cause pneumonia in humans. While much remains unknown about SARS-CoV-2, physicians and researchers have begun to publish relevant findings, and much evidence is available on coronaviruses previously circulating in human and animal populations. In this review, we situate COVID-19 in its context as a transboundary viral disease, and provide a comprehensive discussion focused on the discovery, spread, virology, pathogenesis, and clinical features of this disease, its causative coronaviral pathogen, and approaches to combating the disease through immunotherapies and other treatments and vaccine development. An epidemiological survey revealed a potentially large number of asymptomatic SARS-CoV-2 carriers within the population, which may hamper efforts against COVID-19. Finally, we emphasize that vaccines against SARS-CoV-2, which may be developed by 2021, will be essential for prevention of COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , Drug Development/methods , Immunotherapy/trends , Virus Physiological Phenomena/immunology , Animals , COVID-19/epidemiology , Drug Development/trends , Humans , Immunotherapy/methods , Virus Physiological Phenomena/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL